Citation/Atıf: Keskin M, Uysal İ, Gürcan G. Ayçiçeği balı temelli gümüş nanopartiküllerin yeşil sentezi, karakterizasyonu ve biyolojik aktivitelerinin belirlenmesi (Extended abstract in English: Green Synthesis, Characterization and Determination of Biological Activity of Sunflower Honey Based-Silver Nanoparticles). U. Bee J. – U. Arı. D. 2024; 24(2): 311-324. DOI: 10.31467/uluaricilik.1529043

ARAŞTIRMA MAKALESI / RESEARCH ARTICLE

AYÇİÇEĞİ BALI TEMELLİ GÜMÜŞ NANOPARTİKÜLLERİN YEŞİL SENTEZİ, KARAKTERİZASYONU VE BİYOLOJİK AKTİVİTELERİNİN BELİRLENMESİ

Green Synthesis, Characterization and Determination of Biological Activity of Sunflower Honey Based-Silver Nanoparticles

Merve KESKİN*, İrem UYSAL, Gözde GÜRCAN

Vocational School of Health Science, Bilecik Şeyh Edebali University, Bilecik, TÜRKIYE, Yazışma yazarı / Corresponding author: merveozdemirkeskin@gmail.com, ORCID No: 0000-0001-9365-334X, E-mail: iremuysal1071@gmail.com, ORCID No: 0009-0003-2755-3983, E-mail: gzd324@gmail.com, ORCID No: 0009-0002-5277-0712

Received / Geliş: 06.08.2024 Accepted / Kabul:10.10.2024

DOI: 10.31467/uluaricilik.1529043

ÖΖ

Tıp, ilaç salınım sistemleri, eczacılık, tarım gibi geniş bir yelpazede uygulama alanı bulan nanoteknolojinin yapı taşları olan altın, gümüş, çinko gibi nanopartiküller yeşil sentez tekniği kullanılarak çevre dostu, ekonomik ve biyouyumlu olarak sentezlenebilmektedir. Gümüş nanopartiküllerin vesil sentezinde icermis oldukları biyoaktif bilesenler nedeniyle bitkiler veya bitki temelli ürünler yaygın olarak kullanılmaktadır. Bal içermiş olduğu fenolik bileşenler ve şekerler ile gümüş nanopartiküllerin sentezinde kullanılabilecek önemli doğal ürünlerden biridir. Yapılan bu çalışmada, biyoaktif bileşen yönünden kestane ve meşe balına göre daha zayıf olan ayçiçeği balının gümüş nanopartiküllerin sentezinde kullanım potansiyeli tespit edilmiştir. Sentezlenen ayçiçeği balı temelli gümüş nanopartiküller (SH-AgNPs) karakterize edilmiş ve daha sonra antioksidan aktiviteleri ile yara iyileşmede önemli rolü olan myeloperoksidaz ve kollegenaz enzimleri inhibe etme özellikleri tespit edilmiştir. Sentezlenen nanopartiküllerin 440 nm' de maksimum absorbans verdiği, partikül boyutlarnın 33 nm ile 38 nm arasında değiştiği tespit edilmiştir. Sentezlenen nanopartiküllerin DPPH radikal süpürme aktiviteleri ve FRAP demir indirgeme kapasiteleri sırasıyla % 81±1,42 and % 86±1,24; myleoperksidaz ile kollegenaz enzimlerini inhibe etme özellikleri sırasıyla % 63±1,45 and % 37±1,14 olarak tespit edildi. Elde edilen bulgular ayçiçeği balının nanoteknoloji alanında kullanım potansiveli olduğunu göstermektedir.

Anahtar Kelimeler: Biyolojik sentez, Gümüş nanopartikül, Nanoteknoloji, Antioksidan aktivite, Enzim inhibisyonu

ABSTRACT

Nanoparticles such as gold, silver, zinc, which are the building blocks of nanotechnology, which have a wide range of applications in medicine, drug release systems, pharmacy, agriculture, can be synthesized in an environmentally friendly, economical and biocompatible way using green synthesis technique. In the green synthesis of silver nanoparticles, plants or plant-based products are widely used due to the bioactive components they contain. Honey is one of the important natural products that can be used in the synthesis of silver nanoparticles with its phenolic components and sugars. In this study, the potential of sunflower honey, which is weaker than chestnut and oak honey in terms of

bioactive components, for the synthesis of silver nanoparticles was determined. The synthesized sunflower honey-based silver nanoparticles (SH-AgNPs) were characterized and then their antioxidant activity and inhibition of myeloperoxidase and collagenase enzymes, which play an important role in wound healing, were determined. It was determined that the synthesized nanoparticles gave maximum absorbance at 440 nm and particle sizes ranged between 33 nm and 38 nm. The DPPH radical scavenging activities and ferric reducing capacity (FRAP) of the synthesized nanoparticles were determined as 81±1.42% and 86±1.24%, respectively, and the inhibition properties of myleoperoxidase and collagenase enzymes were determined as 63±1.45% and 37±1.14%, respectively. The findings obtained show that sunflower honey has the potential for use in the field of nanotechnology.

Keywords: Biological synthesis, Silver nanoparticles, Nanotechnology, Antioxidant activity, Enzyme inhibition

EXTENDED ABSTRACT

Objective: Since metals such as gold and silver find a wide range of applications in biology, medicine, environment and industry, their use in studies has been increasing day by day. The physicochemical properties of silver nanoparticles are of interest to researchers. Nanoparticles many can be synthesized using chemical or physical methods. However, the so-called green synthesis method using plants, yeasts, bacteria and fungi is important because it enables environmentally friendly, nontoxic and high purity synthesis. Chemical and physical methods can successfully produce pure, well-defined nanoparticles, but these techniques are more expensive, energy consuming and potentially toxic to the environment. Therefore, biological (green synthesis), synthesis which is an environmentally friendly, economical and rapid synthesis method, is of great interest.

Materials and Methods: Sunflower honey-based silver nanoparticles were obtained according to the method described by Keskin (2022). Accordingly, a 20% (w/w) honey solution was prepared from sunflower honey purchased from a local beekeeper in Bilecik city. Then, the formation of nanoparticles was observed by mixing 0.005M AgNO₃ solution with sunflower honey solution at a ratio of 1:1 at room temperature with a magnetic stirrer at a constant speed. After the detailed characterization, DPPH, FRAP, myeloperoxidase and collagenase enzyme inhibition properties were determined.

Results and Discussion: The optical properties of the synthesized nanoparticles were determined using UV-Vis spectrophotometer. It was observed that the obtained nanoparticles gave maximum absorbance at 440 nm. The reduction of silver ion to metallic silver was also observed by the color change. The optimum pH and temperature values

required for synthesis were determined. It was observed that the size of the obtained nanoparticles varied between 33 and 38 nm. DPPH radical scavenging activity and ferric reducing capacity (FRAP) of the obtained nanoparticles were calculated as 81±1.42% and 86±1.24%. respectively. The of inhibition amount of myeloperoxidase and collagenase enzymes of the obtained nanoparticles was calculated as 63±1.45% and 37±1.14%, respectively.

Conclusion: Silver nanoparticles are materials that have the potential to be used in a wide range of fields from medicine to agriculture with their properties. The synthesis of silver nanoparticles using environmentally friendly green synthesis technique is very popular. In this study, sunflower honey, which has lower biological activity than honey such as chestnut and oak, was used in the green synthesis nanoparticles. The synthesised of silver nanoparticles were characterised using different techniques and their biological activities were determined. It was found that the obtained nanoparticles inhibited myeloperoxidase and collagenase enzymes, which have an important role in wound healing, to a good extent and the nanoparticles showed very good antioxidant activity. It is also possible to determine the potential use of the obtained nanoparticles in different areas.

GIRİŞ

Nanoteknoloji, nano ölçekte şekil ve boyutu kontrol ederek yapıların üretilmesi, taşınması ve uygulanması için kullanılan bir terimdir (Wady vd. 2014). Nanoteknoloji alanı, malzeme bilimlerindeki en dinamik araştırma alanıdır ve nanopartiküllerin (NP'ler) sentezi dünya çapında önemli ölçüde artmaktadır. NP'ler, boyut (1-100 nm), şekil ve yapıları ile diğer partiküllere göre daha yeni veya geliştirilmiş özellikler göstermektedir (Wady vd.

2014; Parvekar vd. 2020). Altın ve gümüş gibi soy metaller, biyoloji, tıp, çevre ve endüstri gibi geniş bir yelpazede uygulama alanı bulduğu için yapılan çalışmalarda kullanımları gün geçtikçe artmaktadır (Yokoyama ve Welchons, 2007). Gümüs nanopartiküllerin fizikokimyasal özellikleri birçok araştırmacının ilgisini çekmektedir (Sharma vd. 2009). Nanopartiküller kimyasal veya fiziksel sentezlenebilmektedir vöntemler kullanılarak (Hanžić vd. 2015; Maleki vd. 2012; Okitsu vd. 2001). Ancak bitki, maya, bakteri ve fungilerin kullanıldığı yeşil sentez olarak adlandırılan metot çevre dostu, nontoksik ve yüksek saflıkta sentez yapılmasına olanak sağladığından önemlidir (He vd. 2018; Kumar ve Yadav 2009; Makarov vd. 2014). Gümüş nanopartikül sentezinde kullanılan kimvasal ve fiziksel vöntemler saf. ivi tanımlanmıs nanopartikülleri basarılı bir sekilde üretebilir, ancak bu teknikler daha pahalı, enerji tüketen ve çevre için potansiyel olarak toksiktir (Okafor vd. 2013). Bu nedenle çevre dostu, ekonomik ve hızlı sentez yöntemi olan biyolojik sentez (yeşil sentez) oldukça Biyolojik sentez yöntemlerinde ilgi çekicidir. nanopartikül üretimi için mikroorganizma hücreleri özütleri elektron vericisi veva bitki olarak kullanılmaktadır (Okafor vd. 2013; Keskin vd. 2022; Khan vd. 2023; Azwatul vd. 2023; Matar vd 2023; Can ve Keskin 2024).

Yeşil sentez ile üretilen gümüş nanopartiküllerin antimikrobiyal, (AqNPs) antikanser, antiinflamatuvar, antifungal, antiviral vb. bircok özelliği olduğu yapılan çalışmalarda belirtilmiştir (He vd. 2018; Jeyaraj vd. 2013; Monteiro vd. 2012; Wong ve Liu 2010; Zhang vd. 2016), Bu uygulamaların yanı sıra gümüş nanopartiküller boya, deterjan, giyim ve ilac endüstrilerinde de kullanılmaktadır (Li vd. 2011; Okaforvd. 2013). Bitki ve doğal kaynaklar kullanılarak gümüş nanopartiküllerin eldesi, toksik olmayışları, sentez yöntemlerinin kolaylığı bakımından önem arz etmektedir.

Ayçiçek balı ülkemizde önemli miktarda üretimi yapılan bir tür çiçek balıdır. Ancak ayçiçek balının hızlı kristalize olması ve diğer ballara nispeten daha düşük antioksidan aktiviteye sahip olması nedeniyle daha çok kahvaltıda kullanımı tercih edilmektedir. Apiterapi uygulamalarında aycicek balının kullanılabilmesi için fonksiyonelleştirilmesi ve katma değerinin arttırılması gerekmektedir. Bu nedenle ayçiçek balının farklı kullanım alanlarının belirlenmesi, teknolojiye, kozmetik alanına, apiterapi uygulamalarına kazandırılma potansiyelinin belirlenmesi önemlidir. Ayçiçek balı içermiş olduğu fenonik bileşenler, şekerler ve diğer farklı biyoaktif ile gümüş nanopartiküllerin bileşenler yeşil vericisi olarak kullanım sentezinde elektron potansiveli olan önemli bir arı ürünüdür. Yapılan bu calışma ile bu potansiyeli tespit etmek amacıyla yeşil sentez ile ayçiçek balı temelli gümüş nanopartiküller sentezlenmiş ve karakterize edilmiştir. Elde edilen nanopartiküllerin antioksidan aktiviteleri ve yara iyileştirmede önemi olan enzimler üzerine inhibisyon etkileri belirlenmiştir.

GEREÇ ve YÖNTEM

Bal temelli gümüş nanopartiküller Keskin (2022)' de bildirilen metoda göre elde edilmiştir. Buna göre Bilecikte üretilmiş ayçiçek balından %20'lik (w/w) bal çözeltisi hazırlanmıştır. Daha sonra analitik saflıkta olan AgNO₃' ten (Sigma- Aldrich) 0,005M çözelti hazırlanmış ve 1:1 oranında ayçiçek balı çözeltisi ile oda sıcaklığında manyetik karıştırıcı ile sabit bir hızda karıştırılarak nanopartiküllerin oluşumu gözlemlenmiştir. Oluşan karışım 9000 rpm'de 15 dk boyunca santrifüjlenmiş (DLab, Çin) ve elde edilen nanopartiküller 60 °C' de 2 saat kurutulmuştur (Şekil 1).

Şekil 1. SH-AgNP'lerin sentezi Figure 1. Synthesis of SH-AgNPs

Optimum pH Belirlenmesi

Gümüş nanopartikül sentezine pH etkisini incelemek amacıyla bal çözeltileri pH 5,0 için asetat tamponu; 7,0 için fosfat tamponu (Na₂HPO₄-NaH₂PO₄, Sigma-Aldrich); 9,0 için glisin tampon çözeltileri kullanılarak hazırlanmıştır. Her bir çözelti ile ayrı ayrı nanopartikül sentezi yapılmış ve UV spektrofotometre (Hach, DR/4000U) absorbans değerleri karşılaştırılmıştır.

Optimum Ekstrakt Derişimi Belirlenmesi

Gümüş nanopartikül sentezine ekstrakt derişiminin etkisinin belirlenmesi amacıyla 1:1, 2:1 ve 3:1 oranlarında bal çözeltileri ile 0,005M AgNO₃ karıştırılarak gümüş nanopartiküller sentezlenmiş ve UV spektrofotometre absorbans değerleri karşılaştırılmıştır.

Optimum Sıcaklık Değerinin Belirlenmesi

Gümüş nanopartikül sentezine sıcaklık etkisini belirlenmek amacıyla reaksiyon ortam sıcaklığı 20 °C, 40 °C ve 60 °C getirilmiş ve UV spektrofotometre absorbans değerleri karşılaştırılmıştır.

Elde Edilen Gümüş Nanopartiküllerin Karakterizasyonu

Optimum koşullarda elde edilen gümüş nanopartiküllerin karakterizasyonu meydana gelen absorbans değişimlerini tespit etmek amacıyla UV spektrofotometre, değişikliğe uğrayan (indirgenenyükseltgenen) fonksiyonel grupları belirlemek amacıyla FT-IR (Thermo Fisher) ve elde edilen nanopartiküllerin boyutlarını belirleyebilmek amacıyla SEM (ZEISS/Supra 40 VP) cihazı kullanılmıştır.

Antioksidan Kapasitenin Tayini

DPPH• radikal (2,2-difenil-1-pikrilhidrazil) süpürme aktivitesi

DPPH• radikali (2,2-difenil-1-pikrilhidrazil, Sigma-Aldrich) ticari olarak satın alınabilen bir radikal olup denemelerde satın alınan bu radikalin 100 µM'lık metanolik çözeltisi kullanılmıştır. Eşit hacimde (750 µL) DPPH• çözeltisi ve numune çözeltileri (0,25 mg/mL, 0,5mg/mL, 1 mg/mL, 1,25 mg/mL ve 1,5 mg/mL, R²: 0,998). karıştırılıp oda sıcaklığında 50 dakika bekletilmiştir. Süre sonunda DPPH•'ın maksimum absorbans verdiği 517 nm'de absorbanslar kaydedilmistir. Bu absorbans değerleri karşılık gelen konsantrasyonlara karşı grafiğe geçirilerek örneklerin % radikal süpürme aktivitesi hesaplanmıştır (Cuendent, 1997).

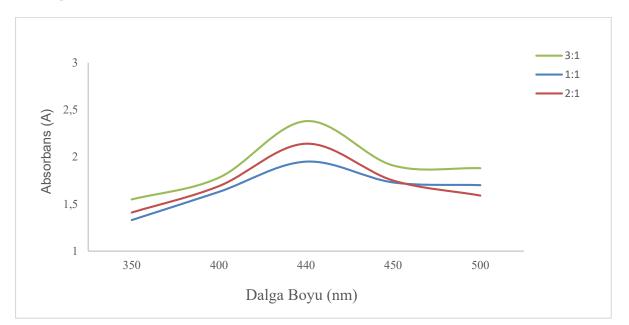
Demir İndirgeme Kapasitesi (FRAP)

FRAP yöntemi, doğal ürünlerin antioksidan kapasitelerinin tayininde en sık kullanılan yöntem olup. doğal ürünlerde bulunan antioksidan maddelerin Fe(III)- TPTZ kompleksinde bulunan ivonunu indirgemesi demir (III)esasina davanmaktadır (Benzie ve Strain, 1999), Cözeltide bulunan antioksidan maddeler tarafından indirgenen Fe(III) 593 nm'de absorbans vermektedir. Absorbans değerlerine karşılık gelen konsantrasyonlara grafiğe geçirilerek karşı örneklerin % demir indirgeme kapasiteleri tespit edilmistir.

Kollegenaz İnhibisyonu

Kollagenaz aktivitesinin inhibisyonu, farklı miktarda nanopartikül ile önceden inkübe edilmiş enzim kullanılarak spesifik kollagenaz substrat FALGPA' nın (Sigma-Aldrich) bölünmesinin izlenmesi ile belirlenmiştir. Kollagenaz enzimi (Sigma-Aldrich) 15 dk boyunca oda sıcaklığında, farklı nanopartikül miktarları kullanılarak, 10 mM CaCl₂ ve 400 mM NaCl iceren 50 mM Tris-HCl (pH 7.5) tamponunda inkübe edilmistir. Daha sonra spesifik kollagenaz FALGPA'nın 0.8 mM'lık substrati cözeltisi nanopartikül karısımı üzerine ilave edilerek 20 dakika boyunca 37 °C' de inkübe edilmiştir. İlgili süre sonunda tüplerin absorbansları 340 nm'de kaydedilmiştir (Tu ve Tawata, 2015).

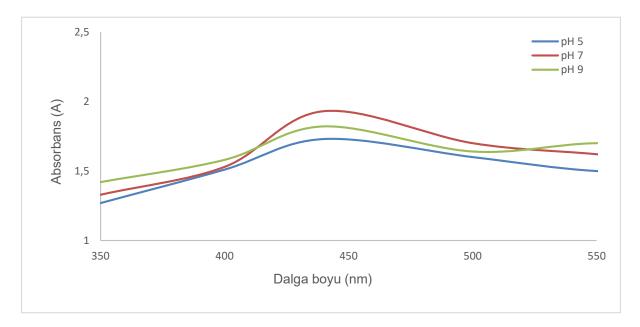
Myloperoksidaz İnhibisyonu

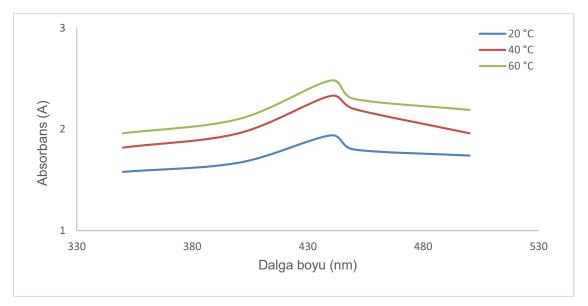

Sentezlenen nanopartiküllerin MPO aktivitesi üzerindeki inhibitör etkisi tespit edilmiştir. Substrat olarak gayakol kullanılmıştır. MPO (2.5 nM, Sigma-Aldrich) enzimi 0,5 mM H₂O₂ içeren 1 mL 50 mM fosfat tamponu (pH 7.4) ve farklı miktarlarda nanopartikül ile 15 dk ön inkübasyona tabi tutulmuştur. Daha sonra reaksiyon tüplerine 1 mM gayakol (Sigma- Aldrich) çözeltisi ilave edilerek 37 °C'de reaksiyon başlatılmış ve 3 dk' da 470 nm'de absorbans artışı kaydedilmiştir. MPO inhibisyonu;

% İnhibisyon = [1- (inhibitör aktivitesi/Kontrol aktivitesi)]*100

formülüne göre hesaplanmıştır (Khalil vd. 2008).

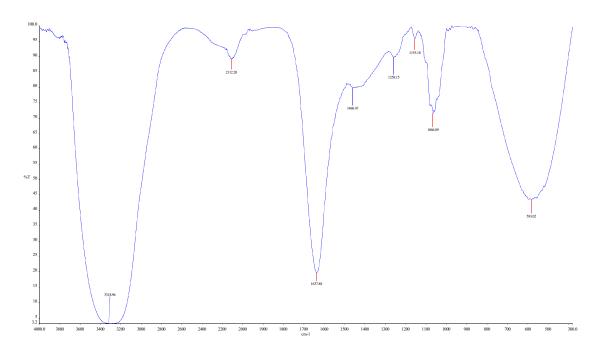
BULGULAR


Sentezlenen nanopartiküllerin optik özellikleri UV-Vis spektrofotometre kullanılarak belirlenmiştir. Elde edilen nanopartiküllerin 440 nm de maksimum absorbans verdiği görülmüştür (Şekil 2).

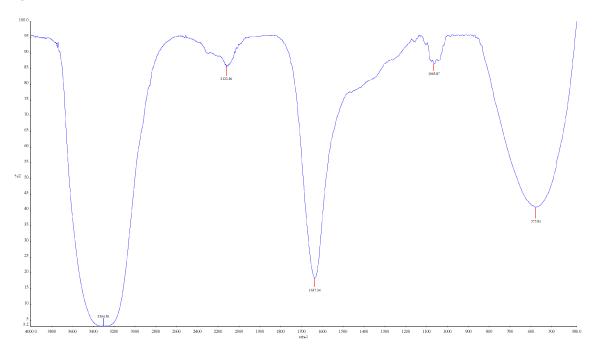

Şekil 2. SH-AgNPs sentezine ekstrakt derişiminin etkisi Figure 2. Effect of extract concentration on SH-AgNPs synthesis

Gümüş iyonunun metalik gümüşe indirgenmesi oluşan renk değişimi ile de gözlemlenmiştir. Sentez

için gerekli optimum pH ve sıcaklık değerleri ayrı ayrı belirlenmiştir (Şekil 3 ve Şekil 4).

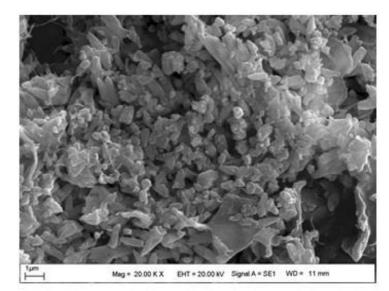


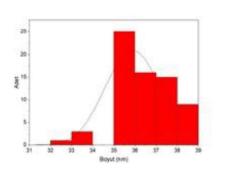
Şekil 3. SH-AgNPs sentezine pH etkisi Figure 3. pH effect on SH-AgNPs synthesis

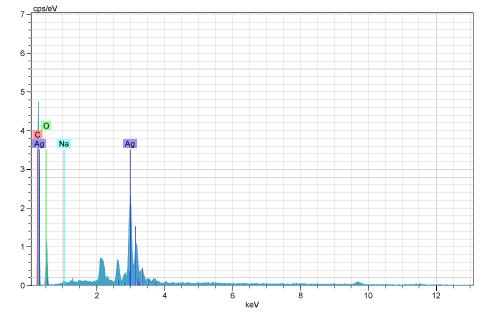


Şekil 4. SH-AgNPs sentezine sıcaklığın etkisi Figure 4. Effect of temperature on the synthesis of SH-AgNPs

Ayçiçeği balı ekstresi ve sentezlenen nanopartiküllerin süpernatantının içermiş olduğu fonksiyonel gruplar FT-IR kullanılarak belirlenmiştir. Şekil 5 ve Sekil 6 da örneklerin içermiş olduğu fonksiyonel grupların pikleri görülmektedir. Şekil 5 ve Şekil 6' da görüldüğü gibi piklerin tamamında kayma vardır.

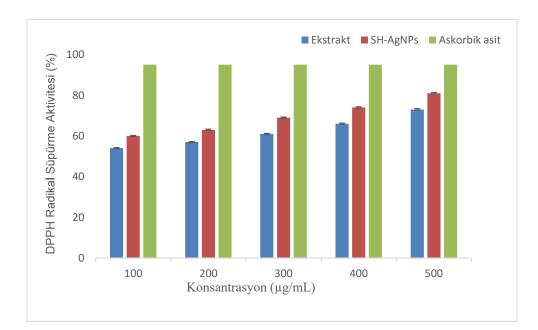



Şekil 5. Ayçiçeği balı ekstraktının FTIR spektrumu Figure 5. FTIR spectrum of sunflower honey extract

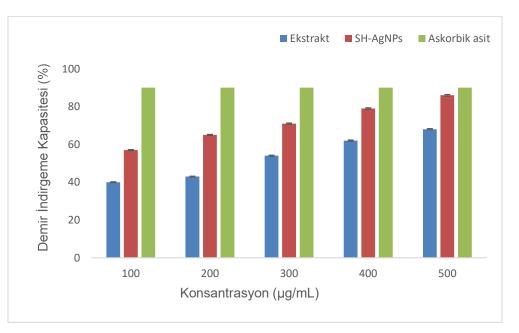

Şekil 6. SH-AgNPs süpernatantının FTIR spektrumu Figure 6. FTIR spectrum of SH-AgNPs supernatant

Elde edilen nanopartiküllerin boyutlarının 33 ile 38 nm arasında değiştiği görülmektedir (Şekil 7). Histogram SEM görüntüsü kullanılarak elde edilmiştir. Elde edilen nanopartiküllerin EDX analizi sonucunda 3 keV' da bir pike sahip oldukları görülmektedir (Şekil 8).

Şekil 7. SH-AgNPs SEM görüntüsü ve histogramı Figure 7. SEM image and histogram of SH-AgNPs

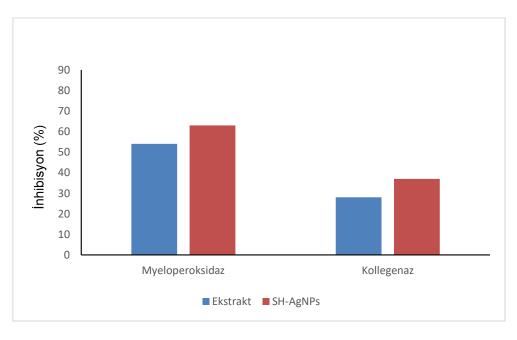


ARAŞTIRMA MAKALESI / RESEARCH ARTICLE


Şekil 8. SH-AgNPs EDX profili Figure 8. EDX profile of SH-AgNPs

Elde edilen nanopartiküllerin DPPH radikal aktivite süpürme ve demir indirgeme kapasitesi (FRAP)

sırasıyla % 81±1.42 ve % 86±1.24 olarak hesaplanmıştır (Şekil 9 ve Şekil 10).


Şekil 9. Ayçiçeği balı ve SH-AgNPs DPPH· radikal süpürme aktiviteleri Figure 9. DPPH· radical scavenging activities of sunflower honey and SH-AgNPs

Şekil 10. Ayçiçeği balı ve SH-AgNPs demir indirgeme kapasitesi Figure 10. Iron reduction capacity of sunflower honey and SH-AgNPs

Elde edilen nanopartiküllerin myeloperoksidaz ve kollegenaz enzimlerini inhibe etme miktarı ise

sırasıyla % 63±1.45 ve % 37±1.14 olarak hesaplanmıştır (Şekil 11).

Şekil 11. Ayçiçeği balı ve SH-AgNPs enzim inhibisyon özellikleri Figure 11. Enzyme inhibition properties of sunflower honey and SH-AgNPs

TARTIŞMA

Yeşil sentez tekniği kullanılarak elde edilen nanopartiküllerin UV-spektrofotometre kullanılarak karakterize edilmesi oldukça yaygındır. Genel olarak gümüş nanopartiküllerin geniş bir skalada farklı dalga boylarında 420 nm (Keskin vd., 2023), 417 nm ve 425 nm nm (Okafor vd., 2013), 425 nm (Awwad ve Salem vd., 2012), 440 nm (Al Sufyani vd., 2019), 400nm (Garibo vd., 2020) yüzey plazmon resonansı (SPR) verdiği literatürde ifade edilmektedir. Elde edilen verilerin literatür ile uyumlu olduğu görülmektedir.

3200 cm⁻¹ ile 3400 cm⁻¹ arasındaki bantlar O-H titreşimlerini ifade etmektedir. Bu piklere ek olarak 2112.20, 1460.40, 1258.15, 1155.18 ve 1066.09 cm⁻¹ pikleri bal ekstraktında bulunan; 2122.46, 1637.34 ve 1063.87 cm¹ pikleri ise AgNPs süpernatantında bulunan piklerdir. C=C, C=O, O-H, C-H, C-N ve -COOH gibi pikler alkan, keton, alken, azotlu moleküllerin titreşimleri ile ilintili olduğu ifade edilebilir. Piklerde gözlenen kaymalar nanopartikül sentezinin başarı ile yapıldığının göstergesi olarak kabul edilebilir (Sadeghi and Gholamhoseinpoor 2015).

Awwad ve Salem (2012) tarafından yapılan çalışmada elde edilen naopartiküllerin boyutlarının 20 ile 40 nm arasında değiştiği, Garibo vd. (2023) oldukları çalışmada elde yapmış edilen nanopartiküllerin boyutlarının 1,2 nm ile 62 nm arasında değiştiği ifade edilmektedir. Yapılan başka bir çalışmada ise elde edilen nanopartiküllerin boyutlarının 3 ile 20 nm arasında değiştiği ifade (Mallikarjuna edilmistir vd 2011). Literatür verilerinden de görüldüğü üzere nanopartiküllerin boyutları geniş bir skalada değişmektedir. Gümüş nanopartiküller için 3 keV' da bir pik karakteristiktir. Yapılan bu çalışmada elde edilen nanopartiküllerin 3 keV' da pik verdiği görülmektedir (Şekil 8).

Kronik (iyileşmeyen) yaralar, çok sayıda karşılıklı nedensel hücresel olayın proteolitik ve nötrofil türevli oksidatif enzimlerin aşırı ekspresyonuna yol açtığı kalıcı bir inflamasyon ile karakterize edilmektedir. Çinko bağımlı bir endopeptidaz ailesi olan matriks metalloproteinazlar (MMP'ler, EC 3.4.24.-), elastin ve kolajen gibi hücre dışı matriks bileşenlerini ve yara bölgesinde oluşan büyüme faktörlerini bozarak iyileşmeyi engeller (Díaz-GonzáLez vd. 2012). Yapılan çalışmalarda ağırlıklı olarak kolajenaz olan toplam matriks metalloproteinaz aktivitesinin, kronik yara sıvılarında akut yara sıvılarına göre 30 kata kadar daha fazla olduğu ifade edilmektedir (Trengove vd. 1999). Bu durum proteaz/antiproteaz dengesizliğine ve hücre dışı matriksin aşırı parcalanmasına neden olmaktadır (Francesko vd. 2013). Dokunun proteolitik hasarı, doğal proteaz inhibitörlerinin ana nötrofil enzimi olan miveloperoksidaz (MPO) tarafından üretilen hipokloröz asit (HOCI) ile oksidasyonu ile daha da desteklenmektedir (Rojikind vd. 2002). Zararlı kronik yara enzimlerinin sayısının akut yaralarda bulunan seviyelere düşürülmesinin iyileşmenin ilerlemesini sağlayacağına inanılmaktadır (Francesko vd. 2013). nedenle yara iyileşmesinde Bu rolü olan myeloperoksidaz ve kollegenaz enzimlerinin inhibisyonu oldukça önemlidir. Figueiredo vd. (2023) tarafından yapılan bir çalışmada sentezlenen nanopartiküllerin DPPH. radikal süpürme aktivitesinin % 83,6, demir indirgeme kapasitesinin 714.82 µM Trolox Equivalent (TE)/g örnek olduğu, kollegenaz enzimini % 75,33 oranında inhibe ettiği ifade edilmiştir. Keskin vd. (2023)'nin yapmış olduğu calısmada kestane balı temelli nanopartiküllerin myeloperoksidaz enzimini % 36,4; kollegenaz enzimini ise %74,2 oranında inhibe ettiği ifade edilmistir. Korkmaz vd. (2024) tarafından vapılan bir calısmada ise sentezlenen gümüs nanopartiküllerin kollegenaz enzimini inhibe etme potansiyeli olduğu ifade edilmiştir. Elde edilen bulguların literatür ile uyumlu olduğu görülmüştür (Tablo 1).

Bal kaynağı	Maksimum UV absorbans değeri (nm)	Partikül boyutu (nm)	Kullanıldığı alan	Kaynak
Marketten satın alınan bal	417	5 ile 25 nm arası	Boya giderimi	Al-Zaban vd. 2021
Malezya orman balı	482	18,98 ile 26,05 nm arası	-	Haiza vd. 2013
Marketten satın alınan bal	411	18,4	-	González Fá vd.2017
Salgı balı	400	42 ile 55 nm arası	Antimikrobiyal aktivite	Czernel vd. 2021
Kaynağı belirtilmemiş	464	11,8	Antimikrobiyal aktivite	Oskuee vd. 2016
Marketten satın alınan bal	400	25 ile 70 nm arası	Antimikrobiyal aktivite	Youssef vd. 2019
Rhododendron balı (deli bal)	456	14,7	Antimikrobiyal aktivite	Matar vd. 2023
Bu çalışma	440	33 ile 38 arası	Antioksidan aktivite ve enzim inhibisyonu	-

Tablo 1. Farklı bal kaynakları kullanılarak sentezlenen gümüş nanopartiküllere ait bazı özellikler ve kullanıldıkları alanlar

 Table 1. Some properties and applications of silver nanoparticles synthesized using different honey sources

Sonuç: Gümüş nanopartiküller sahip oldukları özellikler ile tıptan tarıma oldukça geniş bir yelpazede kullanım potansiyeli olan materyallerdir. Gümüş nanopartiküllerin çevre dostu yeşil sentez sentezlenmesi tekniăi kullanılarak oldukca popülerdir. Yapılan bu calışmada biyolojik aktivitesi kestane, meşe gibi ballara nazaran daha düşük olan ayçiçeği balı gümüş nanopartiküllerin yeşil sentezinde kullanılmıştır. Sentezlenen nanopartiküller farklı teknikler kullanılarak karakterize edildikten sonra biyolojik aktiviteleri tespit edilmiştir. Elde edilen nanopartiküllerin yara iyileşmesinde önemli rolü olan myeloperoksidaz ve kollegenaz enzimlerini iyi derece inhibe ettiği ve nanopartiküllerin oldukça iyi antioksidan aktivite aösterdiği tespit edilmistir. Elde edilen nanopartiküllerin tıp, ilaç taşınım/salınım sistemleri, tekstil, cevre, tarım gibi farklı alanlarda kullanım potansiyellerinin yapılacak olan ileri çalışmalarla belirlenebilmesi de söz konusudur.

Çıkar çatışması: Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır.

Etik durumu: Çalışmanın yürütülmesi esnasında hayvan veya insan deneyleri yapılmamıştır.

Mali Kaynak: Bu çalışma, TÜBİTAK Bilim İnsanı Destek Programları Başkanlığı (BİDEB) tarafından yürütülen 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı TÜBİTAK 2209-A tarafından 1919B012208098 proje numarası ile desteklenmiştir.

Veri kullanılabilirliği: Mevcut çalışmada kullanılan veriler talep edilmesi halinde sorumlu yazardan temin edilebilir

Yazar katkıları: MK: Verilerin yorumlanması, makale yazımı ve editi; IU ve GG: Verilerin elde edilmesi, projenin yürütülmesi.

KAYNAKLAR

- Al Sufyani NM, Hussien NA, Hawsawi YM. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials, 2019, 1-9. https://doi.org/10.1155/2019/7361695
- Al-Zaban MI, Mahmoud MA, AlHarbi MA. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi Journal of Biological Sciences, 2021; 28(3): 2007-2013.

https://doi.org/10.1016/j.sjbs.2021.01.003

Awwad AM, Salem NM. Green synthesis of silver nanoparticles by Mulberry Leaves Extract. Nanoscience and Nanotechnology, 2012;

2(4): 125-128. https://doi.org/10.5923/j.nn.20120204.06

- Azwatul HM, Uda MNA, Gopinath SC, Arsat ZA, Abdullah F, Muttalib MFA, Adam T. Plantbased green synthesis of silver nanoparticle via chemical bonding analysis. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.01.005
- Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292
- Can M, Keskin M. Green synthesis, characterization, and biochemical properties of waste walnut (*Juglans regia* L.) inner shell-based silver nanoparticles. Journal of the Serbian Chemical Society, 2024; 23-23. https://doi.org/10.2298/JSC231110023C
- Cuendet M, Hostettmann K, Potterat O. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 1997; 80: 1144-1152. https://doi.org/10.1002/hlca.19970800411
- Czernel G, Bloch D, Matwijczuk A, Cieśla J, Kędzierska-Matysek M, Florek M, Gagoś M. Biodirected synthesis of silver nanoparticles using aqueous honey solutions and evaluation of their antifungal activity against pathogenic Candida spp. International journal of molecular sciences, 2021; 22(14): 7715. https://doi.org/10.3390/ijms22147715
- Díaz-GonzáLez M, Rocasalbas G, Francesko A, Touriño S, Torres JL, Tzanov T. Inhibition of deleterious chronic wound enzymes with plant polyphenols. Biocatalysis and Biotransformation, 2012; 30(1), 102-110. https://doi.org/10.3109/10242422.2012.6466 76
- Figueiredo CCM, da Costa Gomes A, Zibordi LC, Granero FO, Ximenes VF, Pavan NM, da Silva R MG. Biosynthesis of silver nanoparticles of Tribulus terrestris food supplement and evaluated antioxidant activity and collagenase, elastase and tyrosinase enzyme inhibition: In vitro and in silico approaches. Food and Bioproducts Processing, 2023; 138: 150-161. https://doi.org/10.1016/j.fbp.2023.01.010

- Francesko A, da Costa DS, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta biomaterialia, 2013; 9(2), 5216-5225. https://doi.org/10.1016/j.actbio.2012.10.014
- Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Susarrey-Arce A. Green synthesis of silver nanoparticles using *Lysiloma acapulcensis* exhibit high-antimicrobial activity. Scientific reports, 2020; 10(1): 12805. https://doi.org/10.1038/s41598-020-69606-7
- González Fá AJ, Juan A, Di Nezio MS. Synthesis and characterization of silver nanoparticles prepared with honey: the role of carbohydrates. Analytical Letters, 2017; 50(5): 877-888. https://doi.org/10.1080/00032719.2016.1199 558
- Haiza H, Azizan A, Mohidin AH, Halin DSC. Green synthesis of silver nanoparticles using local honey. Nano Hybrids, 2013; 4: 87-98. https://doi.org/10.4028/www.scientific.net/NH .4.87.
- Hanžić N, Jurkin T, Maksimović A, Gotić M. The synthesis of gold nanoparticles by a citrateradiolytical method. Radiation Physics and Chemistry, 2015; 106: 77-82. https://doi.org/10.1016/j.radphyschem.2014.0 7.006
- He Y, Li X, Zheng Y, Wang Z, Ma Z, Yang Q, Zhang H. A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New Journal of Chemistry, 2018; 42(4): 2882-2888. https://doi.org/10.1039/C7NJ04224H
- Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Ganapathi A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids and Surfaces B: Biointerfaces, 2013; 106: 86-92.

https://doi.org/10.1016/j.colsurfb.2013.01.027

Khalil NM, Pepato MT, Brunetti IL. Free radical scavenging profile and myeloperoxidase inhibition of extracts from antidiabetic plants: Bauhinia forficata and Cissus sicyoides, Biological research, 2008; 41(2): 165-171.

U.Arı D. - U Bee J. 2024 (2): 311-324

https://doi.org/10.4067/S0716-97602008000200006

- Khan MR, Urmi MA, Kamaraj C, Malafaia G, Ragavendran C, Rahman MM. Green synthesis of silver nanoparticles with its bioactivity, toxicity and environmental applications: A comprehensive literature review. Environmental Nanotechnology, Monitoring & Management, 2023; 100872. https://doi.org/10.1016/j.enmm.2023.100872
- Keskin M. Synthesis, characterization and antidiabetic potential of bee pollen based silver nanoparticles. EI-Cezeri, 2022; 9(1): 266-275. https://doi.org/10.31202/ecise.963670
- Keskin M, Kaya G, Keskin Ş. Green synthesis and biochemical properties of propolis based silver nanoparticles. Uludağ Arıcılık Dergisi, 2022; 22(1), 59-67. https://doi.org/10.31467/uluaricilik.1080096
- Keskin M, Kaya G, Bayram S, Kurek-Górecka A, Olczyk P. Green synthesis, characterization, antioxidant, antibacterial and enzyme inhibition effects of chestnut (Castanea sativa) honey-mediated silver nanoparticles. Molecules, 2023; 28(6): 2762. https://doi.org/10.3390/molecules28062762
- Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 2009; 84(2): 151-157. https://doi.org/10.1002/jctb.2023
- Korkmaz N, Ceylan Y, İmamoğlu R, Kısa D, Şen F, Karadağ A. Eco-friendly biogenic silver nanoparticles: synthesis, characterization and biological applications. International Journal of Environmental Science and Technology, 2024; 1-10. https://doi.org/10.1007/s13762-024-05860-w
- Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011; 24: 135-141. https://doi.org/10.1007/s10534-010-9381-6
- Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Raju BDP. Green synthesis of silver nanoparticles using *Ocimum* leaf extract and their characterization. Digest Journal of

Nanomaterials and Biostructures, 2011; 6(1): 181-186.

- Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. Green" nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 2014; 6(1): 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44
- Maleki H, Simchi A, Imani M, Costa BFO. Sizecontrolled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. Journal of Magnetism and Magnetic Materials, 2012; 324(23): 3997-4005. https://doi.org/10.1016/j.jmmm.2012.06.045
- Matar G, Akyuz G, Kaymazlar E, Andaç M. An investigation of green synthesis of silver nanoparticles using Turkish honey against pathogenic bacterial strains. Biointerface Research in Applied Chemistry, 2023; 13(2). https://doi.org/10.33263/BRIAC132.195
- Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Henriques M. Silver nanoparticles: Influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012; 54(5): 383-391. https://doi.org/10.1111/j.1472-765X.2012.03219.x
- Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International journal of environmental research and public health, 2013; 10(10): 5221-5238. https://doi.org/10.3390/ijerph10105221
- Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y. Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles. Langmuir, 2001; 17: 7717-7720. https://doi.org/10.1021/la010414I
- Oskuee RK, Banikamali A, Bazzaz BSF, Hosseini HA, Darroudi M. Honey-based and ultrasonicassisted synthesis of silver nanoparticles and their antibacterial activities. Journal of Nanoscience and Nanotechnology, 2016;

16(8): 7989-7993. https://doi.org/10.1166/jnn.2016.13031

Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial investigations in dentistry, 2020; 7(1): 105-109. https://doi.org/10.1080/26415275.2020.1796

https://doi.org/10.1080/26415275.2020.1796 674

Rojkind M, Dominguez-Rosales J A, Nieto N, Greenwel P. Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences CMLS, 2002; 59, 1872-1891.

https://doi.org/10.1007/PL00012511

- Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using *Ziziphora tenuior* (Zt) extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015; 134: 310-315. https://doi.org/10.1016/j.saa.2014.06.046
- Sharma V.K, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 2009; 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002
- Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair and Regeneration, 1999; 7(6), 442-452. https://doi.org/10.1046/j.1524-475X.1999.00442.x

- Tu PTB, Tawata S. Anti-oxidant, anti-aging, and antimelanogenic properties of the essential oils from two varieties of *Alpinia zerumbet*. Molecules, 2015; 20(9): 16723-16740. https://doi.org/10.3390/molecules200916723
- Wady AF, Machado AL, Foggi CC, Zamperini CA, Zucolotto V, Moffa EB, Vergani CE. Effect of a Silver Nanoparticles Solution on *Staphylococcus aureus* and *Candida* spp. Journal of Nanomaterials, 2014; 2014(1): 545279. https://doi.org/10.1155/2014/545279
- Wong KKY, Liu X. Silver nanoparticles The real "silver bullet" in clinical medicine? Med Chem Comm, 2010; 1(2): 125. https://doi.org/10.1039/c0md00069h
- Youssef GA, El-Boraey AM, Abdel-Tawab MM. Ecofriendly green synthesis of silver nanoparticles from Egyptian honey: Evaluating its antibacterial activities. Egyptian Journal of Botany, 2019; 59(3): 709-721. https://doi.org/10.21608/ejbo.2019.6597.126 1
- Yokoyama K, Welchons DR. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces. Nanotechnology, 2007; 18(10): 105101. https://doi.org/10.1088/0957-4484/18/10/105101
- Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 2016; 17(9): 1534. https://doi.org/10.3390/ijms17091534